Tumor-DNA Based Vaccines Fail to Induce Autoimmune Disease in Mice

نویسندگان

  • InSug O-Sullivan
  • Terry Lichtor
  • Roberta Glick
  • Edward P. Cohen
چکیده

Allogeneic cellular cancer vaccines that express tumor antigens specified by tumor-DNA have been found to be effective in the treatment of mice with intracerebral breast cancer, a metastasis model system. The vaccines were prepared by the transfer of genomic DNA from a spontaneously arising adenocarcinoma of the mammary gland into a mouse fibroblast cell line (LM). The immunity in tumor-bearing mice treated by immunization with the DNA-based vaccines was specific for the type of tumor from which the DNA was obtained. It was driven mainly by CD8+ T-cells. Here, we present data indicating that animals receiving the therapeutic vaccines failed to exhibit signs of autoimmunity, as indicated by an examination of various H/E stained organs and tissues including brain for infiltrating inflammatory cells and by the absence of serum anti-nuclear antibody (ANA) in the immunized mice. In addition, tumors derived from the vaccine itself failed to develop in immune-competent tumor-free mice injected with the non-irradiated allogeneic vaccines alone.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Antitumor Response to a Codon-Optimized HPV-16 E7/HSP70 Fusion Antigen DNA Vaccine

Background: Vaccines based on virus-like particles are effective against Human Papilloma Virus (HPV) infection; however, they have not shown a therapeutic effect against HPV-associated diseases. New immunotherapy strategies based on immune responses against tumor antigens can positively affect the clearance of HPV-associated lesions. Objective: To generate two therapeutic fusion DNA vaccines (o...

متن کامل

Strong Immune Responses Induced by a DNA Vaccine Containing HPV16 Truncated E7 C-terminal Linked to HSP70 Gene

Background: Vaccines capable of controlling tumor virus based infections are found difficult to develop due to the consistence latent infection in the host. DNA vaccines are attractive tools for the development of HPV vaccines and inducing antigen-specific immunity owing to the stability, simplicity of delivery, safety and cost effectiveness. However, there is a need to increase their potency b...

متن کامل

بررسی پاسخ تکثیری لنفوسیت‌های طحالی حاصل از تزریق پلاسمید کد کننده E7-HPV16 در مدل موش توموری پاپیلوماویروس

Background & Objective: Human papillomavirus (HPV) oncoproteins, including E6 and E7 are constitutively expressed in cervical cancer cells. These proteins are ideal targets to be used for developing therapeutic vaccines against existing HPV-associated carcinomas. The aim of this study was to measure the proliferation response rate of splenic lymphocytes derived from E7-HPV16 encoding plasmid in...

متن کامل

Protective Immunity in Mice Following Immunization with the Cochleate-Based Subunit Influenza Vaccines

High morbidity and mortality of influenza virus infection makes it an important disease world-wide. Mouse is a very well-studied animal model for this disease with similar manifestation to human disease. It would be desirable to induce mucosal as well as circulating immune responses to obtain protection from infection and to decrease the spread of the virus. Cell mediated immunity (proliferativ...

متن کامل

DNA-Based Vaccine Is More Efficient than Non-Pathogenic Live Vaccine for the Prevention of HPV16 E7-Overexpressing Cancers

  Introduction: Vaccinology provides promising approaches for the control of various infectious diseases. Among different strategies, DNA vaccines offer attractive research opportunities for development of vaccines for induction of antigen-specific immunity owing to their stability, simplicity of delivery, safety and cost effectiveness. However, there is a need to increase their potency by the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010